The correlation between the optical absorption spectrum and paramagnetic properties of neodymium trifluoride

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1994 J. Phys.: Condens. Matter 65169
(http://iopscience.iop.org/0953-8984/6/27/025)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.147
The article was downloaded on 12/05/2010 at 18:49

Please note that terms and conditions apply.

The correlation between the optical absorption spectrum and paramagnetic properties of neodymium trifluoride

L Beaury, J Derouet, M Escorne and P Porcher
Laboratoire de Chimie Métallurgique et Spectroscopie des Terres Rares, UPR, 209 du CNRS, 1 Place A Briand, 92195 Meudon, France

Received 7 February 1994, in final form 21 March 1994

Abstract

The $4 \mathrm{f}^{3}$ configuration of Nd^{3+} in NdF_{3} has been revisited. The real point symmetry of the crystalline matrix- C_{2}-has been considered for the simulation, which means 15 crystal field parameters (CFPS). The simulation has been conducted by considering together the energy level scheme derived from the optical absorption spectra and the paramagnetic susceptibility and its variation with the temperature and the g values of the ground level. It is shown that only a single set of crps reproduces this information correctly, whereas various sets are found if only the energy level scheme is retained in the simulation process.

1. Introduction

The rare earth trifluoride is one of the most completely studied crystalline matrices, in terms of determination of the energy level scheme of the $4 \mathrm{f}^{N}$ configurations. This exceptional feature is due to (i) the facility to grow single crystals, (ii) very good transparency far into the UV region, which provides a great number of experimental levels, and (iii) the fact that the rare earth trifluorides constitute an isostructural series for most of the rare earths. Consequently, this matrix provides one of the best opportunities for testing the simulation models derived from theories of atomic spectra. Among these fluorides the energy level sequence of $\mathrm{Nd}^{3+}\left(4 \mathrm{f}^{3}\right)$ is certainly the most interesting as a consequence of a relatively large number of configuration states (182 Kramers doublets), but not too large in terms of the size of the secular determinant we need to diagonalize. The energy level scheme of $\mathrm{LaF}_{3}: \mathrm{Nd}^{3+}$ has been previously reported by Carnall et al [1] (146 crystal field levels were experimentally obtained and fitted to a root mean square deviation of $14.0 \mathrm{~cm}^{-1}$) and also by some of us [2] (116 levels among the 127 observed levels were fitted to a mean square deviation of $15.5 \mathrm{~cm}^{-1}$). These two simulations were performed by considering a crystal field Hamiltonian with a $\mathrm{C}_{2 v}$ symmetry, an approximation of C_{2}, the real point symmetry of the site occupied by the Nd [3].

The aim of the present work is to revisit the energy level scheme deduced from the optical absorption spectrum and to reproduce the position of the 137 observed energy levels by considering the real site symmetry C_{2} (table 1). As a second step, the derived wavefunctions have been used for calculating the paramagnetic susceptibility and its evolution versus temperature and the g values of the ground state level. The comparison with experimental measurements performed on a single crystal constitutes an excellent opportunity to test the ability of the model to give 'good' wavefunctions for the ion considered. The most sensible test is the reproduction of the g value characteristic of the ground crystal field level, whereas the calculated paramagnetic susceptibility includes contributions from different levels, which has the disadvantage of averaging the values.

Table 1. Experimental and calculated energy levels and computed g values for Nd^{3+} in NdF_{3} (from set No 1).

| Nominal state ${ }^{2 S+1} L(v)_{J}$ | $\begin{aligned} & E_{\mathrm{exp}} \\ & \left(\mathrm{~cm}^{-1}\right) \end{aligned}$ | $E_{\text {calc }}$ $\left(\mathrm{cm}^{-1}\right)$ | $\left\|g_{\\|}\right\|$ (calc) | \|8」1|
 (calc) | $\left\|g_{12}\right\|$
 (calc) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }^{4} \mathrm{I}_{9 / 2}$ | 0 | -13 | 3.02 | 1.72 | 1.03 |
| | 38 | 17 | 2.14 | 2.82 | 0.01 |
| | 142 | 139 | 1.18 | 1.85 | 0.14 |
| | 331 | 317 | 0.56 | 3.98 | 3.06 |
| | 522 | 515 | 4.01 | 2.10 | 1.63 |
| ${ }^{4} \mathrm{I}_{11 / 2}$ | - | 1971 | 10.05 | 0.44 | 0.14 |
| | - | 2021 | 1.82 | 2.57 | 5.53 |
| | - | 2058 | 1.52 | 2.70 | 6.46 |
| | - | 2112 | 0.96 | 9.43 | 1.07 |
| | - | 2203 | 2.71 | 1.67 | 5.67 |
| | - | 2232 | 7.55 | 3.39 | 1.72 |
| ${ }^{4} \mathbf{I}_{13 / 2}$ | 3929 | 3918 | 13.59 | 0.72 | 0.06 |
| | 3982 | 3973 | 1.16 | 3.89 | 8.64 |
| | 4052 | 4033 | 0.66 | 1.81 | 7.57 |
| | 4090 | 4108 | 0.84 | 11.47 | 2.44 |
| | 4131 | 4142 | 2.69 | 4.52 | 7.86 |
| | 4210 | 4224 | 5.84 | 0.63 | 3.65 |
| | 4305 | 4300 | 10.43 | 3.14 | 2.41 |
| ${ }^{4} \mathbf{1}_{15 / 2}$ | 5808 | 5816 | 7.19 | 3.42 | 6.63 |
| | 5882 | 5881 | 7.95 | 4.67 | 1.45 |
| | 5996 | 6001 | 2.97 | 2.35 | 3.42 |
| | 6181 | 6188 | 1.65 | 8.78 | 6.24 |
| | - | 6229 | 0.49 | 7.57 | 8.37 |
| | 6344 | 6341 | 2.35 | 2.21 | 5.86 |
| | 6500 | 6510 | 6.01 | 7.25 | 2.50 |
| | 6590 | 6610 | 12.25 | 5.05 | 3.14 |
| ${ }^{4} \mathrm{~F}_{3 / 2}$ | 11600 | 11569 | 0.38 | 1.04 | 0.16 |
| | 11646 | 11627 | 0.71 | 0.51 | 0.90 |
| $\begin{aligned} & { }^{4} \mathrm{~F}_{5 / 2} \text { \& } \\ & { }^{2} \mathrm{H}(2)_{9 / 2} \end{aligned}$ | 12600 | 12583 | 2.47 | 2.52 | 0.63 |
| | 12614 | 12606 | 2.46 | 3.47 | 0.79 |
| | 12658 | 12646 | 0.45 | 3.25 | 3.99 |
| | 12684 | 12675 | 2.26 | 1.15 | 0.16 |
| | 12703 | 12707 | 0.67 | 3.25 | 3.95 |
| | 12770 | 12802 | 2.36 | 2.23 | 0.59 |
| | 12860 | 12901 | 2.54 | 0.46 | 1.95 |
| | 12923 | 12919 | 3.35 | 2.20 | 3.19 |
| $\begin{aligned} & { }^{4} \mathrm{~F}_{7 / 2} \& \\ & { }^{4} S_{3 / 2} \end{aligned}$ | 13521 | 13518 | 2.49 | 2.93 | 0.45 |
| | 13604 | 13616 | 1.48 | 2.21 | 3.39 |
| | 13671 | 13695 | 0.71 | 2.12 | 4.93 |
| | 13691 | 13717 | 1.92 | 5.20 | 1.14 |
| | 13738 | 13723 | 4.49 | 2.16 | 2.96 |
| | 13738 | 13758 | 0.51 | 1.51 | 3.96 |
| ${ }^{4} \mathrm{~F}_{9 / 2}$ | 14846 | 14861 | 0.86 | 10.10 | 0.82 |
| | 14870 | 14882 | 10.74 | 1.12 | 0.11 |
| | 14912 | 14915 | 2.01 | 6.45 | 1.33 |
| | 14941 | 14953 | 4.19 | 4.00 | 1.14 |
| | 14972 | 14984 | 7.40 | 2.54 | 2.78 |

Table 1. (continued)

Nominal state ${ }^{2 S+1} L(v)$ s	$\begin{aligned} & E_{\mathrm{exp}} \\ & \left(\mathrm{~cm}^{-1}\right) \end{aligned}$	$\begin{aligned} & E_{\mathrm{calc}}^{\left(\mathrm{cm}^{-1}\right)} \end{aligned}$	$\|g u\|$ (calc)	$\begin{aligned} & \left\|g_{\perp 1}\right\| \\ & (\mathrm{calc}) \end{aligned}$	$\begin{aligned} & \left\|g_{12}\right\| \\ & (\mathrm{calc}) \end{aligned}$
${ }^{2} \mathrm{H}(2)_{1 / / 2}$	16003	16022	1.25	7.31	3.02
	16041	16037	6.93	3.23	0.78
	16057	16047	0.93	3.57	2.88
	16067	16067	1.96	3.44	0.01
	16111	16096	2.41	3.39	4.16
	16179	16144	7.68	2.35	1.75
$\begin{aligned} & { }^{4} G_{5 / 2} \& \\ & { }^{4} G_{7 / 2} \& \\ & { }^{2} G(1)_{7 / 2} \end{aligned}$	17313	17307	0.71	0.57	0.19
	17319	17331	0.49	1.21	0.22
	17376	17377	1.06	0.28	0.74
	17525	17509	2.47	1.98	2.93
	17535	17521	2.37	1.17	0.54
	17590	17582	1.94	1.38	1.49
	17621	17617	1.73	0.85	1.60
	19150	19126	3.68	1.49	1.57
	19238	19218	0.84	5.12	0.15
	19260	19272	0.56	2.25	2.77
	19342	19338	3.85	1.20	0.41
$\begin{aligned} & { }^{2} \mathrm{~K}_{13 / 2} \& \\ & { }^{4} G_{9 / 2} \end{aligned}$	19585	19609	10.65	1.56	0.96
	19612	19635	1.85	1.13	8.35
	19658	19679	3.92	2.77	2.16
	19689	19712	4.93	2.05	1.81
	19712	19740	5.32	2.82	2.66
	19751	19768	5.08	3.96	1.46
	-	19786	1.00	0.71	0.55
	19806	19807	1.37	0.88	0.63
	19849	19868	1.21	5.17	2.25
	19897	19920	5.39	2.44	0.62
	19980	19969	4.24	8.43	1.31
	-	20046	5.79	8.81	0.67
${ }^{2} \mathrm{G}(1)_{9 / 2}$	21160	21140	3.60	6.56	1.46
	21177	21174	2.29	5.38	2.94
	21200	21194	1.55	5.97	1.57
	21236	21221	2.20	0.17	3.32
	21259	21268	2.56	0.67	2.19
${ }^{2} \mathrm{D}(1)_{3 / 2}$	21340	21331	0.70	0.45	0.22
	21354	21345	0.60	0.92	0.55
$\begin{aligned} & { }^{4} G_{11 / 2} \& \\ & { }^{2} K_{15 / 2} \end{aligned}$	-	21623	2.84	4.19	4.11
	21687	21667	6.34	0.74	1.18
	21725	21705	2.65	3.56	6.96
	21777	21754	2.95	4.29	0.42
	21786	21784	2.06	5.46	0.43
	21815	21829	6.86	1.45	0.87
	21853	21853	4.63	3.14	3.53
	-	21887	6.73	2.72	2.24
	21901	21897	2.99	2.83	0.80
	21944	21927	2.29	6.91	1.30
	21964	21958	8.45	1.07	2.36
	21993	21981	3.91	4.10	2.04
	22007	22028	4.28	8.57	3.94
	-	22089	3.40	9.69	3.39

Table 1. (continued)

Nominal state ${ }^{2 S+1} L(v)_{J}$	$\begin{aligned} & E_{\text {exp }} \\ & \left(\mathrm{cm}^{-1}\right) \end{aligned}$	$\begin{aligned} & E_{\mathrm{calc}} \\ & \left(\mathrm{~cm}^{-1}\right) \end{aligned}$	$\begin{aligned} & \left\|g_{d}\right\| \\ & (\mathrm{calc}) \end{aligned}$	$\begin{aligned} & \left\|g_{\perp 1}\right\| \\ & (\mathrm{calc}) \end{aligned}$	$\begin{aligned} & \left\|g_{\perp 2}\right\| \\ & (\mathrm{calc}) \end{aligned}$
${ }^{2} \mathrm{P}_{1 / 2}$	23471	23472	0.62	0.64	0.62
${ }^{2} \mathrm{D}(1)_{5 / 2}$	23952	23940	1.82	5.65	0.41
	24004	24020	0.30	3.64	0.65
	24056	24061	3.73	1.42	3.36
${ }^{2} \mathrm{P}_{3 / 2}$	26350	26340	0.80	3.18	0.25
	26406	26398	1.90	1.16	2.44
${ }^{4} \mathrm{D}_{3.2}$	28313	28329	2.92	2.30	0.28
	28361	28372	2.11	2.42	0.52
${ }^{4} \mathrm{D}_{5 / 2}$	28498	28488	4.27	0.26	1.53
	28522	28525	2.01	1.95	2.18
	28653	28654	4.11	1.33	1.46
${ }^{4} \mathrm{D}_{1 / 2}$	28952	28987	0.20	0.39	0.21
${ }^{2} \mathrm{I}_{11 / 2}$	29429	29419	6.97	4.33	2.10
	29455	29460	6.03	1.83	0.16
	29533	29527	3.76	4.32	1.58
	29603	29617	6.44	1.42	1.10
	-	29631	1.86	4.66	0.46
	29753	29764	0.79	9.04	1.49
${ }^{2} \mathrm{~L}_{15 / 2}$ \&	30221	30198	7.96	1.67	5.38
${ }^{4} \mathrm{D}_{7 / 2}$	30248	30252	1.14	1.57	4.04
	30312	30321	10.82	0.18	2.66
	30403	30409	3.79	9.17	0.21
	30432	30456	4.51	6.19	2.95
	30525	30498	4.41	6.99	0.82
	30544	30528	5.30	2.46	4.13
	30572	30576	2.61	6.54	0.74
	30637	30594	3.83	4.14	1.01
	30665	30662	4.98	4.66	2.24
	30769	30762	3.01	12.21	0.34
	-	30776	1.25	9.25	0.37
${ }^{2} \mathrm{I}_{13 / 2}$	30845	30854	9.35	5.20	2.82
	30941	30904	4.08	3.56	5.26
	30998	30963	1.04	7.42	0.10
	31024	31028	10.11	0.14	1.74
	-	31050	2.16	7.35	2.95
	-	31085	0.89	8.51	0.57
	31133	31151	1.23	12.96	0.34
${ }^{2} L_{17 / 2}$	31736	31743	13.11	2.35	2.90
	-	31775	1.17	1.24	12,66
	31847	31828	15.85	0.64	1,06
	-	31943	4.70	2.30	8.76
	-	31952	3.96	11.42	2.09
	-	31966	2.80	9.98	2.02
	-	32038	5.35	10.81	2.33
	-	32113	4.33	13.40	0.73
	-	32250	4.25	16.40	0.04
${ }^{2} \mathrm{H}(1)_{9 / 2}$	32992	32.984	4.69	1.72	3.18
	33058	33068	1.32	2.38	3.62
	33146	33155	5.14	2.12	1.13
	33200	33197	2.87	0.84	3.78
	33234	33231	0.83	4.20	0.23

Table 1. (continued)

Nominal state ${ }^{2 S+1} L(v)_{J}$	$\begin{aligned} & E_{\exp } \\ & \left(\mathrm{cm}^{-1}\right) \end{aligned}$	$E_{\text {calc }}$ $\left(\mathrm{cm}^{-1}\right)$	$\left\|g_{\\|}\right\|$ (calc)	\| $\mathrm{g} \perp \mathrm{LI}$ \| (calc)	$\begin{aligned} & \left\|g_{\perp 2}\right\| \\ & \text { (calc) } \end{aligned}$
${ }^{2} \mathrm{D}(2)_{3 / 2}$	33568	33571	1.02	0.99	1.96
	33602	33607	0.85	2.48	0.38
${ }^{2} \mathrm{H}(1)_{1 / 2}$ \&	34235	34225	5.54	1.96	2.60
${ }^{2} \mathrm{D}(2)_{5 / 2}$	34341	34337	0.61	1.76	1.39
	34376	34394	5.29	0.39	0.28
	34471	34482	3.80	3.47	2.48
	-	34506	2.30	1.92	3.31
	34590	34555	1.15	2.53	1.45
	34650	34677	3.65	3.53	1.01
	34686	34700	6.66	0.13	0.57
	-	34822	2.92	4.41	3.47
${ }^{2} \mathrm{~F}(2)_{5 / 2}$	38640	38656	3.34	0.91	1.88
	38700	38708	0.64	2.36	1.65
	38820	38789	1.80	3.79	0.63
${ }^{2} \mathrm{~F}(2)_{7 / 2}$	-	40060	2.95	1.42	0.49
	-	40100	1,29	2.60	1.31
	-	40160	0.96	5.69	2.10
	-	40224	4.27	1.96	1.79
${ }^{2} \mathrm{G}(2)_{9 / 2}$	-	47860	4.35	1.15	4.25
	-	47880	3.62	1.64	4.39
	-	47953	3.18	0.18	1.93
	-	48039	4.86	4.60	1.82
	-	48087	1.47	8.42	1.55
${ }^{2} \mathbf{G}(2){ }_{7 / 2}$	-	48727	1.62	1.29	1.61
	-	48770	0.27	2.72	1.09
	-	48905	1.49	2.45	0.92
	-	48994	1.35	4.71	2.01
${ }^{2} \mathrm{~F}(1)_{7 / 2}$	-	66359	4.14	1,40	3.41
	-	66.519	3.01	2.29	0.32
	-	66614	3.68	2.93	2.32
	-	66787	1.18	7.52	0.67
${ }^{2} \mathrm{~F}(1)_{5 / 2}$	-	67673	1.92	1.08	2.88
	-	67793	2.54	1.57	0.96
	-	68034	0.80	3.89	0.82

2. Optical spectrum and simulation

We have revisited the optical absorption spectrum of pure NdF_{3} as a single crystal up to $38900 \mathrm{~cm}^{-1}$ at liquid He temperature. The experimental conditions have been described elsewhere [2]. 138 levels are observed (table 1); only one of them is not very certain and is thus not included in the simulation. In this matrix some of the energy levels located in the UV energy range are observed $\left({ }^{2} \mathrm{H}(1)_{9 / 2},{ }^{2} \mathrm{D}(2)_{3 / 2},{ }^{2} \mathrm{H}(1)_{11 / 2},{ }^{2} \mathrm{D}(2)_{5 / 2}\right.$ and ${ }^{2} \mathrm{~F}(2)_{5 / 2}$, which allows us to vary freely all the free ion parameters.

2.1. Theoretical treatment of experimental optical data

The central field approximation considers separately the Hamiltonians corresponding to
the free ion and crystal-field interactions, although the final purpose is to input them simultaneously in the secular determinant before diagonalization. The major free ion interactions in the trivalent rare earth ions with the $4 f^{N}$ configurations include the electrostatic repulsion between the 4 f electrons and the coupling of their spin and orbital angular momenta. Several minor contributions within the free ion scheme can be taken into account in addition to the crystal field effect. Since the treatment of these primary and other smaller but essential contributions to the effective operator Hamiltonian of the system has been covered in an extensive review [4], we limit our discussion to an identification of the parameters and the corresponding operators of the parametric model. The Hamiltonian used in the present study can be written as

$$
\begin{gathered}
H=H_{0}+\sum_{k=0,1,2,3} E_{k}(n f, n f) e^{k}+\zeta_{4 f} A_{\mathrm{SO}}+\alpha L(L+1)+\beta G\left(\mathrm{G}_{2}\right)+\gamma G\left(\mathrm{R}_{7}\right) \\
\quad+\sum_{\lambda=2,3,4,6,7,8} T^{\lambda} t_{\lambda}+H_{\mathrm{CF}}
\end{gathered}
$$

H_{0} is the spherically symmetric one-electron part of the free ion Hamiltonian, which separates the ground configuration from excited ones, E_{k} are the Racah parameters, $\zeta_{4 \mathrm{f}}$ is the spin-orbit coupling constant and e^{k} and $A_{\text {so }}$ represent the angular parts of the electrostatic repulsion and spin-orbit coupling respectively. For the configurations of two or more equivalent electrons the two-body interactions must be taken into consideration; they introduce the Tree parameters α, β and $\gamma ; L$ is the total orbital angular momentum; $G\left(\mathrm{G}_{2}\right)$ and $G\left(\mathrm{R}_{7}\right)$ are the Casimir operators for the groups G_{2} and R_{7} respectively. For confgurations with three or more equivalent $4 f$ electrons, we can apply the threebody configuration interaction terms parametrized with the Judd's parameters $T^{\lambda}(\lambda=$ $2,3,4,6,7,8$); the t_{λ} are operators transforming according to the irreducible groups G_{2} and R_{7}, also. In our simulation the magnetic interactions (spin-spin, spin-other orbit) parametrized by the M^{k} and P^{k} integrals are not included [1].

The one-electron crystal field Hamiltonian $H_{C F}$ [5] consists of a sum of products between the real and imaginary parts of the crystal field parameters (CFPs) B_{q}^{k} and S_{q}^{k} and the spherical harmonics C_{q}^{k} as follows:

$$
H_{\mathrm{CF}}=\sum_{k=0}^{6} \sum_{q=-k}^{k}\left[B_{q}^{k}\left(C_{q}^{k}+(-1)^{q} C_{-q}^{k}\right)+i S_{q}^{k}\left(C_{q}^{k}-(-1)^{q} C_{-q}^{k}\right)\right]
$$

The number of non-zero real and imaginary parameters depends on the crystallographic point site symmetry of the lanthanide ion. For a $C_{2 v}$ point symmetry nine non-zero B_{q}^{k} CFPS are involved whereas nine non-zero B_{q}^{k} CFPS and six non-zero S_{q}^{k} CFPs are necessary to describe the C_{2} point symmetry. Usually when crystal field calculations are performed with a C_{2} point symmetry S_{2}^{2} is set to zero, which corresponds to an arbitrary choice of the (x, y) reference axis system. This is no longer possible here because the magnetic data suppose a precise orientation of the axis set; thus S_{2}^{2} is included in some simulations. The two-electron crystal field parameters are set to zero and do not vary in this simulation.

2.2. Simulation

The actual fitting procedure between experimental and calculated energy level values was conducted with standard least-squares calculations using the root mean square (RMS) standard deviation as a figure of merit describing the quality of the fit:

$$
\sigma=\left(\Sigma\left(E_{\mathrm{exp}}-E_{\mathrm{calc}}\right)^{2} /\left(N_{\mathrm{lev}}-N_{\mathrm{par}}\right)\right)^{1 / 2}
$$

where $E_{\text {exp }}$ and $E_{\text {calc }}$ are the experimental and calculated energies, $N_{\text {lev }}$ is the number of experimental levels and N_{par} the number of parameters. Although the calculation was executed in the approximate symmetry $\mathrm{C}_{2 \mathrm{v}}$, Carnall et al [1] found a good agreement between experimental and calculated energy levels; however, this set of parameters will appear as not satisfactory in the sense that it is not able to reproduced at the same time the energy level scheme and g values and the paramagnetic susceptibility and its evolution versus temperature. One fitting was attempted in symmetry C_{2} by Morrison and Leavitt [6] but only with 47 levels. Another simulation performed more recently by Duan and Xu [7], also considering a strongly reduced basis, yielded completely different values for the CFPS, apparently non-realistic. In our fitting procedure on the real point symmetry C_{2}, the initial CFP values are those of [2] for the free ion parameters as well as for the B_{q}^{k} CFPs. The starting S_{q}^{k} values are those deduced from the lattice sum calculation of Morrison and Leavitt reported by Carnall [1], which was based on the crystal structure of Cheetham et al [3].

A simulation involving so many parameters is rather difficult to perform in terms of significance of the parameters and of their certainty. The problem becomes serious when the symmetry is relatively low, because the CFPs have individually a smaller influence on the energy levels positions than the free ion parameters. Several sets of CFPs can be found. It is obvious that the final result will always depend on the choice made for the refinement. An alternative method for the simulation is to consider the descending symmetry procedure, by which the final and real symmetry is considered as distorted from higher symmetry. In the case of NdF_{3}, the procedure could be $\mathrm{D}_{3 \mathrm{~h}} \rightarrow \mathrm{D}_{3} \rightarrow \mathrm{C}_{2 \mathrm{y}} \rightarrow \mathrm{C}_{2}$. The simulation in the $\mathrm{D}_{3 \mathrm{~h}}$ point symmetry involves only four real CFPs, which gives a relatively simple and certain simulation procedure. After that, the CFPs are transformed according to a rotation, making the reference z axis of the crystal field potential collinear with the C_{2} axis of the structure, which gives two sets of starting parameters for the $C_{2 v}$ point symmetry [8] and finally the imaginary parts of the CFRS are added in the last step of the simulation, in the C_{2} symmetry.

The first step of the simulation is to operate in the $\mathrm{C}_{2 \mathrm{v}}$ symmetry. The set A obtained in [2] from 116 energy levels was used as starting values for the simulation running on 137 energy levels; the set B was then deduced.

In the second step, the simulation operates in C_{2} symmetry, using the set B as initial values. For a refinement involving many CFPs the parameters are never all varied simultaneously. Some of them are allowed to vary, others being fixed in a more or less arbitrary manner. The real parts of the CFPS are first fixed and the imaginary parts are varied; after that, only the real parts are varied, the imaginary parts being fixed, and the iteration is carried on up to the final set of parameters. In fact, we found four sets of CFPs in C_{2} symmetry not fundamentally different from each other (with the exception of the set No 4 , from the second way in the $D_{3 \mathrm{~h}} \rightarrow \mathrm{D}_{3} \rightarrow \mathrm{C}_{2 \mathrm{v}}$ path [8], giving almost the same RMS standard deviations (between 17.7 and $18.4 \mathrm{~cm}^{-1}$), but without any significant variation in the energy level scheme. They can be considered as solutions for the simulation from the optical data (table 2).

3. Paramagnetic susceptibility and its simulation

For the following discussion we have to keep in mind that the real site symmetry of NdF_{3} is C_{2} [3], but distortion of a D_{3} site. Our reference axis is the pseudo-threefold axis and we call the susceptibility obtained when the magnetic field is parallel to this threefold axis $\chi_{i l}$.

Table 2. Free ion and crystal field parameters for Nd^{3+} in NdF_{3}. Values are in cm^{-1}. Sets 1 to 4 represent different steps in the refinement procedure (see the text).

Parameter	Set $A\left(C_{2 v}\right)$ from [2]	Set B ($\mathrm{C}_{2 v}$)	Set No 1	Set No 2	Set No 3	Set No 4
E^{0}	23869(2)	23826 (1)	23826(2)	23827(1)	23820(1)	23830 (1)
E	4839(3)	4823(1)	4822(1)	4824(1)	4821 (1)	4823(1)
E^{2}	23.79(0.04)	23.70(0.01)	23.70 (0.01)	23.70(0.01)	23.70 (0.01)	23.72(0.01)
E^{3}	490(1)	490.4(0.1)	490.2(0.2)	490.5(0.1)	489.6(0.1)	490.5(0.2)
ζ	880(1)	881.7(1.0)	881.6(0.7)	881.6(0.7)	881.2(0.7)	$881.0(0.7)$
α	20.8(0.2)	21.28(0.03)	$21.27(0.03)$	$21.28(0.03)$	21.39(0.03)	21.10(0.03)
β	-581(11)	-576(4)	-575(3)	-576(3)	-580(3)	-571(3)
γ	[1443]	1514(3)	1515(4)	1509(4)	1518(4)	1512(4)
T^{2}	312(34)	304(3)	309(3)	302(3)	327(2)	296(3)
T^{3}	47(4)	43(2)	43(2)	43(2)	42(2)	43(2)
T^{4}	94(4)	95(2)	96(2)	$95(2)$	98(2)	101(2)
T^{6}	-276(9)	-301(5)	-300(4)	-301(5)	-302(5)	-301(5)
T^{7}	304(17)	323(5)	326(5)	325(5)	335(5)	325(5)
T^{8}	264(27)	237(6)	236(6)	232(6)	255(6)	227(6)
B_{0}^{2}	117(25)	193(14)	184(15)	185(15)	191(14)	122(14)
B_{2}^{2}	-215(23)	-220(7)	-208(7)	-225(7)	-262(6)	201(7)
B_{0}^{4}	361(46)	241(44)	276(48)	217(47)	251(49)	299(58)
B_{2}^{4}	421(65)	544(26)	482(28)	502(28)	518(28)	-390(30)
B_{4}^{4}	586(54)	550(24)	599(24)	489(28)	429(28)	684(23)
B_{0}^{6}	-1224(50)	-1208(33)	-1203(33)	-1222(33)	-1073(37)	93(45)
B_{2}^{6}	149(72)	173(30)	168(35)	234(31)	$91(33)$	$1177(18)$
B_{4}^{6}	-1035(42)	-953(20)	-892(30)	-856(23)	-568(31)	-151(40)
B_{6}^{6}	-546(38)	-594(28)	-602(30)	-382(40)	-664(29)	689(26)
S_{2}^{2}	-	-	113(14)	[0]	21(14)	[0]
S_{2}^{4}	-	-	-16(45)	142(53)	60(47)	-73(64)
S_{4}^{4}	-	-	-73(47)	302(41)	321 (35)	175(53)
S_{2}^{6}	-	-	346(40)	-232(42)	307(44)	361(46)
S_{4}^{6}	-	-	54(78)	-187(61)	-670(29)	186(40)
S_{6}^{6}	-	-	271(51)	-524(33)	-414(41)	-163(65)
nb levels	116	137	137	137	137	137
RMS	15.5	18.4	18.3	18.1	17.7	18.4
Residue	22736	38706	36142	35952	33983	37075

Although the twofold axis-perpendicular to this pseudo-threefold axis-is the reference axis for the description of the crystal field potential and consequently for our calculations, all results will be presented versus the pseudo-threefold axis.

3.1. Experimental background

The paramagnetic susceptibilities have been measured on two sets of apparatus: the $\chi_{\|}$and χ_{\perp} values were measured from 4.2 to 1100 K using a Faraday balance (figure 1); $\chi_{\perp 1}$ and $\chi_{\perp 2}$ are values measured in two mutually perpendicular directions, perpendicular to the applied magnetic field, measured on a DSM8 susceptometer from 2 to 300 K (figure 2). The setup was calibrated with $\mathrm{BaFe}_{12} \mathrm{O}_{19}$ as standard. The diamagnetic correction was calculated using the values-in $10^{-6} \mathrm{emu} \mathrm{mol}{ }^{-1}-$ of -27 and 9 for Nd^{3+} and F^{-}, respectively [9]. The magnetic susceptibilities were found to be independent of the magnetic field (up to 18 kG) in the temperature range measurement.

Figure 1. The paramagnetic susceptibility of NdF_{3}, parallel (triangles) and perpendicular (circles) to the C_{3} axis, measured from 4.2 to 1100 K . Computed values (continuous line) are from set No 1 .

Figure 2. Experimental values ($\chi_{\| \|}$(circles), $\chi_{\perp 1}$ (squares) and $\chi \perp 2$ (triangles)) measured with the DSM8 susceptometer.

Picard et al [10] have determined with accuracy the values of $\chi_{\| \|}$at very low temperature between 2 and 4.2 K . We have already reported these values in [2] (with an error for the $1 / \chi_{\|}$scale).

3.2. Computed values

An applied external magnetic field constitutes a new interaction operating as a perturbation of the system. Naturally, it is always possible to introduce the magnetic operator characterizing this perturbation in the secular determinant before diagonalization. The main effect should be to lift the remaining degeneracy of the Kramers doublets. This also means that we would need to diagonalize a matrix whose size has the configuration degeneracy, without any possible division into submatrices to save the computing time as well as to obtain more certainty in the wavefunctions. In fact, due to the relatively small amplitude of the usual magnetic field, the best way is to consider the Van Vleck formula [11], the result of an application of perturbation theory. The magnetic susceptibility χ is then written as

$$
\chi=\left[N \beta^{2} / \sum_{i} \exp -\left(\frac{E_{i}^{(0)}}{k T}\right)\right] \sum_{i}\left[\frac{\left(\varepsilon_{i}^{(1)}\right)^{2}}{k T}-2 \varepsilon_{i}^{(2)}\right] \exp -\left(\frac{E_{i}^{(0)}}{k T}\right)
$$

with

$$
\varepsilon_{i}^{(1)}=\left\langle\Psi_{i}\right|\left(\boldsymbol{L}+g_{\mathrm{e}} \boldsymbol{S}\right) \cdot \boldsymbol{u}\left|\Psi_{i}\right\rangle
$$

and

$$
\varepsilon_{i}^{(2)}=\sum_{\substack{j \\ E_{i}^{(0)} \neq E_{j}^{(0)}}} \frac{\left.\left[\left\langle\Psi_{i}\right|\left(L+g_{e} S\right) \cdot u \mid \Psi_{j}\right)\right]^{2}}{E_{i}^{(0)}-E_{j}^{(0)}}
$$

Table 3. g values. Sets $1-4$ represent different steps in the refinement procedure (see the text).

\boldsymbol{g}	Experiment $[15]$	Experiment $[13]$	Set $A\left(C_{2 v}\right)$ from [2]	Set $\mathbf{B}\left(C_{2 v}\right)$	Parameters from [1]	Set No 1	Set No 2	Set No 3	Set No 4	
$\left\|g_{\\| 1 \mid}\right\|$	3.02	3.11	2.73	2.89	3.53	3.02	2.13	3.50	0.26	
$\left\|g_{\perp 1}\right\|$	1.72	1.36	2.37	1.11	1.78	1.72	2.47	1.58	3.32	
$\left\|g_{12}\right\|$	1.03	1.09	1.99	0.16	1.39	1.03	1.26	1.01	0.29	

In these expressions, N is the Avogadro number, k is the Boltzmann constant, β is the Bohr magneton and $g_{\mathrm{e}}=2.0023$. The wavefunctions Ψ_{i} and Ψ_{j} are the unperturbed eigenfunctions of the Hamiltonian, corresponding to the $E_{i}^{(0)}$ and $E_{j}^{(0)}$ eigenvalues. u is a unit vector related to the three susceptibilities χ_{x}, χ_{y} and χ_{z}.

The calculations have been performed by considering the 18 lowest Kramers doublets $\left({ }^{4} \mathrm{I}_{9 / 2},{ }^{4} \mathrm{I}_{11 / 2},{ }^{4} \mathrm{I}_{13 / 2}\right)$ which appeared to be largely sufficient to cover the thermal population effect well above 1000 K [12]. The results of this calculation is reported in figure 1 ; if the threefold axis is the z axis, $\chi_{\|}=\chi_{z}$ and χ_{\perp} is taken as $\left(\chi_{x}+\chi_{y}\right) / 2$. There is a small deviation at $T>800 \mathrm{~K}$, which may be due to a modification of the NdF_{3} cell parameters and consequently of the CFPs. The reproduction of the experimental data is very good for three sets among four, with the exception of set No 4. At low temperatures set No 2 gives the best simulation. In contrast set No 3 is not satisfactory in that area, whereas set No 1 reproduces correctly the experimental data in the whole temperature range (figure 1). Finally we cannot determine which CFPs set is the best for this simulation.

4. g values and their simulation

4.1. Experimental data

The g values for the ground state level of Nd^{3+} in LaF_{3} have been experimentally determined by electron spin resonance [13]: $g_{\|}=3.11, g_{\perp 1}=1.36, g_{\perp 2}=1.09$. The value of $g_{\|}$has been used for estimation of the spin-lattice relaxation time of Nd^{3+} in NdF_{3} single crystals [14]. Moreover, the magnetic field dependence in a far-infrared spectrum study gave another set of values [15] close to the preceding one: $g_{\|}=3.02, g_{\perp 1}=1.72, g_{\perp 2}=1.03$.

4.2. Computed values

The principle of g calculation is quite similar to that of paramagnetic susceptibility. The same $\left(L+g_{\mathrm{e}} S\right)$ tensorial operator is applied to the wavefunction of a level. The g values are non-zero only for Kramers doublets. When the symmetry is binary, as for NdF_{3}, the three components of g have relatively simple expressions:

$$
\begin{aligned}
& g_{i 1}=g_{z}=2\left\langle\Psi_{+}\right| L_{z}+g_{\mathrm{e}} S_{z}\left|\Psi_{+}\right\rangle \\
& g_{\perp 1}=g_{x}=2\left\langle\Psi_{+}\right| L_{x}+g_{e} S_{x}\left|\Psi_{-}\right\rangle \\
& g_{\perp 2}=g_{y}=2 \mathrm{i}\left\langle\Psi_{+}\right| L_{y}+g_{e} S_{y}\left|\Psi_{-}\right\rangle
\end{aligned}
$$

In these expressions, Ψ_{+}is one eigenvector of the form

$$
\Psi_{+}=a|J, M\rangle+b\left|J, M^{\prime}\right\rangle+\cdots
$$

and Ψ_{-}is its Kramers conjugate

$$
\Psi_{-}=(-1)^{J+M} a^{*}|J,-M\rangle+(-1)^{J+M^{\prime}} b^{*}\left|J,-M^{\prime}\right\rangle+\cdots
$$

Table 3 reports the values of $\left|g_{11}\right|,\left|g_{11}\right|$ and $\left|g_{12}\right|$ for the ground crystal field level calculated with the different sets of CFPs.

5. Discussion

Among the four sets of CFPs which give about the same RMS standard deviation for the fitting of the optical energy levels, only one of them (No 4) gives g and $\chi_{\|}$values far from the experimental values and with even the anisotropy $1 / \chi_{\|}-1 / \chi_{\perp}$ reversed when compared to the experiment. The other sets give a good general agreement for the paramagnetic susceptibility simulation. Set No 1 gives the best agreement for the whole temperature range whereas set No 2 reproduces $1 / \chi_{\|}$more precisely at very low temperature ($2 \mathrm{~K}<T<4.2 \mathrm{~K}$). This is due to (i) the almost perfect simulation of the energy difference between the ground and the first excited crystal field levels ($36 \mathrm{~cm}^{-1}$ compared to the experimental value $38 \mathrm{~cm}^{-1}$) and (ii) differences in the wavefunction composition. These two sets have exactly the same free ion parameters. For the g values the best agreement is obtained with set No 1 , which is assumed to constitute the final result.

As mentioned before, these different sets of parameters confirm the difficulties for running a correct and certain simulation only by considering the optical data, when the number of parameters which have to vary freely is so large. In this sense the use of the g values as well as the χ values seems to be essential in order to achieve the simulation. It is also evident that such difficulties occur when the number of CFPs is large. For crystals with higher point symmetries, thus with fewer CFPs, the optical data can be sufficient for running a certain simulation. The same type of problem may also be found for the simulation of the $3 \mathrm{~d}^{N}$ configurations $[16,17]$, which have generally an experimental energy level scheme reduced to a few bands. This is also the case of non-transparent rare earth materials, for which only some of the ground levels can be measured by neutron scattering [18]. One possible way to reproduce the behaviour of the $3 \mathrm{~d}^{N}$ or $4 \mathrm{f}^{N}$ configurations in such cases is to include in the fitting procedure the optical and the magnetic data.

Acknowledgments

The authors thank Dr J P Chaminade and Professor M Pouchard from the Laboratoire de Chimie du Solide du CNRS in Bordeaux for growing the single crystals used in this study and for measurement of the susceptibilities $\chi_{\|}$and χ_{\perp} from 4.2 to 1100 K .

References

[1] Camall W T, Goodman G L, Rajnak K and Rana R S 1988 A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3 Argonne National Laboratory Report
[2] Caro P, Derouet J, Beaury L, Teste de Sagey G, Chaminade J P, Aride J and Pouchard 1981 J. Chem. Phys. 742698
[3] Cheetham A. K, Fender B E F, Fuess H and Wright A F 1976 Acta. Crystallogr. B 3294
[4] Crosswhite H M and Crosswhite H 1984 J. Opt. Soc. Am. B 1246
[5] Wyboume B G 1965 Spectroscopic Properties of Rare Earths (New York: Interscience)
[6] Morrison C A and Leavitt R P 1979 J. Chem. Phys. 712366
[7] Duan M and Xu Y 1992 J. Magn. Magn. Mater. 1151
[8] Porcher P, Svoronos D R, Leskelä M and Hölsä J 1983 J. Solid State Chem. 46101
[9] Mulay L N 1963 Magnetic Susceptibility (New York: Wiley) p 1782
[10] Picard J, Guillot M, Le Gall H, Leycuras C and Feldmann P 1979 C. R. Acad Sci. B 288175
[11] Van Vleck JH 1932 The Theory of Electric and Magnetic Susceptibilities (Oxford: Oxford University Press)
[12] Beaury L and Caro P 1990 J. Physique 51471
[13] Baker J M and Rubin R S 1961 Proc. Phys. Soc. 781353
[14] Korczak W, Paradowski M L and Misiak L E 1991 Phys. Status Solidi b 165203
[15] Bauerle D, Borstel G and Sievers A J 1978 J. Appl. Phys. 49676
[16] Bailleul S and Porcher P 1989 Mol. Phys. 66605
[17] Caro P, Derouet J and Porcher P 1985 C. R. Acad. Sci. 11301901
[18] Antson O, Beaury L, Derouet J, Hölsà J and Mutka H Phys. Rev. to be published

